BLACK FRIDAY: 2-for-1 offer NOVEMBER 20 - 26 See details

Pikabot

86
Global rank
90 infographic chevron month
Month rank
87 infographic chevron week
Week rank
0
IOCs

Pikabot is a trojan malware with a focus on loader capabilities. Pikabot is also used for other activities, such as executing commands on the infected system. The earlier versions of the malware made use of extensive code obfuscation to evade detection. Upon infection, it collects system information and sends it to command-and-control servers.

Loader
Type
ex-USSR
Origin
1 February, 2023
First seen
14 November, 2024
Last seen

How to analyze Pikabot with ANY.RUN

Type
ex-USSR
Origin
1 February, 2023
First seen
14 November, 2024
Last seen

IOCs

IP addresses
108.61.171.180
3.1.40.229
74.235.249.12
95.169.205.17
175.41.161.109
89.110.72.7
3.78.53.151
18.157.195.14
57.155.50.252
45.195.200.116
172.233.155.253
89.117.2.33
89.117.2.34
155.94.208.137
172.233.221.61
4.175.178.149
129.80.253.141
109.123.244.131
193.122.128.77
150.136.16.205
Domains
vmd129057.contaboserver.net
zuum.firstbasedso.com
anadesky.firstbasedso.com
siack.firstbasedso.com
adguard.info
buildmateindia.com
tropicanarestaurants.com
miracle-mansions.com
opentrade.com.bo
ppgfans.com
44residenceandapartment.org
fountainofvictory.org
melbournerollershutters.net.au
ttc.edu.sg
agriformexico.com
webtv24.org
nassifenterprise.com
alhoja.info
polymersanaat.com
careersit.co.za
Last Seen at

Recent blog posts

post image
6 Common Persistence Mechanisms in Malware
watchers 323
comments 0
post image
Automated Interactivity: Stage 2
watchers 2186
comments 0
post image
HawkEye Malware: Technical Analysis
watchers 3149
comments 0

What is Pikabot malware?

Pikabot, a loader malware, made its first appearance in the cybersecurity realm in February 2023. This malicious software is recognized for its wide array of anti-analysis features and flexible capabilities that have made it a popular choice among many attackers.

The malware functions through two key modules: the loader and the core. The loader initiates the malware's operations, while the core houses its primary functionalities. Pikabot shows signs of continuous evolution, as its latest version appeared in February 2024, exhibiting notable differences from its original builds.

The resemblances between Pikabot and Qakbot have led to assumptions that they could be the work of the same malware developers. Pikabot has also been utilized in campaigns orchestrated by the threat actor TA577, where it was disseminated in conjunction with the DarkGate malware.

Get started today for free

Analyze malware and phishing in a fully-interactive sandbox

Create free account

Pikabot malware technical details

Criminals leverage Pikabot for various harmful activities which include:

  • Executing Commands via cmd.exe: Pikabot can execute commands on the compromised system using the Windows Command Prompt (cmd.exe).
  • Terminating the Current Process: Pikabot has the capability to self-terminate.
  • Injecting and Executing Downloaded Shellcode: The malware can download shellcode from its command-and-control (C2) server and inject it into other running processes.
  • Injecting Downloaded DLL and EXE Files: Pikabot can also download and inject DLL and executable files.

In its earlier iterations, the Pikabot trojan utilized a combination of AES-CBC and RC4 key to encrypt strings. The new version demonstrates a shift towards less complex obfuscation and only occasional use of RC4.

Another notable difference between the early variants of the malware and its newest form is the approach to storing a configuration. While the first builts contained hardcoded configs, the newer iterations tend to download them from the command and control (C2) server.

The Pikabot malware is particularly skilled at evading sandbox detection. One way it does this is by postponing its execution until the sandbox analysis period has expired. The malware also integrates junk code among legitimate instructions to further complicate analysis.

Pikabot uses regex to dynamically generate file names and other data. This lets the malware hide its code and evade detection by security tools that rely on signatures.

Pikabot initiates its operations by registering the compromised host with the C2 servers. This process involves gathering system information and submitting it to the C2 server via an HTTPS POST request. The gathered data encompasses. The data collected by Pikabot is encoded using standard Base64 and then encrypted using AES. The malware collects the following information about the system:

  • Network Information: This includes details about the network connections, IP addresses, etc.
  • User and Group Information: Pikabot collects usernames and other related details.
  • Windows Build Information: The malware gathers data about the Windows operating system installed on the system, including the version and build number.
  • Generic Host Information: This includes various details about the system's hardware and software configuration, such as the amount of available RAM.
  • Additional Host Information: Depending on the commands received from the command-and-control (C2) server, Pikabot can collect extra info about the compromised system, including screenshots.

Pikabot execution process

Let’s upload a sample of Pikabot to the ANY.RUN sandbox to conduct a Pikabot malware analysis sessions and observe its execution process in detail.

Pikabot malware initiates its execution chain by leveraging phishing emails or malicious downloads to infiltrate a system. Once inside, it employs PowerShell scripts or macros to download additional payloads from a remote server.

Pikabot then uses living-off-the-land techniques, such as exploiting legitimate system processes like "ctfmon.exe," to evade detection and maintain persistence. This process, commonly used for language and input services, is hijacked to execute malicious code while appearing benign.

The malware establishes communication with its command-and-control (C2) server, receiving instructions and exfiltrating sensitive data. It can also spread laterally across networks, exploiting vulnerabilities or using stolen credentials.

Throughout its execution, Pikabot employs various obfuscation and evasion techniques to avoid detection by security solutions.

Pikabot process graph in ANY.RUN Pikabot process graph demonstrated in ANY.RUN

Pikabot malware distribution methods

Just as in the case of other widespread malware, such as Remcos and NjRAT, Pikabot has been observed to be distributed primarily via phishing emails. Attackers usually employ multi-stage attacks that begin with an email that ask users to perform certain activities, such as clicking a link or opening a weaponized attachment. From there, the infection begins.

Another notable attack involving Pikabot occurred in 2023 when attackers utilized malvertising. As part of their campaign, they employed Google Ads to promote a fake website with a download link for AnyDesk, a remote desktop software. After running the installer file, the victim’s system became compromised and infected with Pikabot.

Conclusion

Pikabot is a sophisticated trojan malware that has the potential to significantly disrupt the affected infrastructure. Thanks to its anti-analysis features, it can be a challenge for certain security solutions to detect it. Therefore, it is impossible to use reliable solutions that timely implement updates to keep up with the new version of Pikabot.

Use ANY.RUN, a cloud-based sandbox, for analyzing suspicious files and links to identify Pikabot and other malware families. The service lets you gain an in-depth look at the behavior of any malware in a completely safe and secure environment. ANY.RUN generates detailed reports on the analyzed threats that contain all the essential information, including Pikabot IOCs (indicators of compromise) and TTPs, needed for making better security decisions.

Create your ANY.RUN account – it’s free!

HAVE A LOOK AT

AsyncRAT screenshot
AsyncRAT
asyncrat
AsyncRAT is a RAT that can monitor and remotely control infected systems. This malware was introduced on Github as a legitimate open-source remote administration software, but hackers use it for its many powerful malicious functions.
Read More
DarkGate screenshot
DarkGate
darkgate
DarkGate is a loader, which possesses extensive functionality, ranging from keylogging to crypto mining. Written in Delphi, this malware is known for the use of AutoIT scripts in its infection process. Thanks to this malicious software’s versatile architecture, it is widely used by established threat actors.
Read More
Lumma screenshot
Lumma
lumma
Lumma is an information stealer, developed using the C programming language. It is offered for sale as a malware-as-a-service, with several plans available. It usually targets cryptocurrency wallets, login credentials, and other sensitive information on a compromised system. The malicious software regularly gets updates that improve and expand its functionality, making it a serious stealer threat.
Read More
Razr screenshot
Razr
razr
Razr is a destructive ransomware that infiltrates systems to encrypt files, rendering them inaccessible to users. It appends the ".razr" extension to the encrypted files and drops a ransom note, typically named "README.txt," instructing victims on how to pay the ransom to obtain the decryption key. The malware often spreads through phishing emails with malicious attachments or by exploiting vulnerabilities in software and operating systems. Razr employs strong encryption algorithms, making it challenging to decrypt files without the attackers' key.
Read More
Bluesky Ransomware screenshot
BlueSky ransomware, first identified in June 2022, shares code similarities with other well-known ransomware families like Conti and Babuk. It primarily spreads via phishing emails and malicious links and can propagate through networks using SMB protocols. BlueSky uses advanced evasion techniques, such as hiding its processes from debuggers via the NtSetInformationThread API, making it difficult for analysts to detect and mitigate its attacks.
Read More
Bumblebee Loader screenshot
Bumblebee Loader
bumblebee
Bumblebee is a highly adaptable malware loader, often used by threat actors linked to the Conti and TrickBot cybercrime groups. Since its discovery in 2021, Bumblebee has been leveraged in phishing campaigns and email thread hijacking, primarily to distribute payloads like Cobalt Strike and ransomware. The malware employs obfuscation techniques, such as DLL injection and virtual environment detection, to avoid detection and sandbox analysis. Its command-and-control infrastructure and anti-analysis features allow it to persist on infected devices, where it enables further payload downloads and system compromise.
Read More